Module 7: Bra-Ket Algebra and Linear Harmonic Oscillator- II

7.1 $|n\rangle$ are the normalized eigenkets of the Hamiltonian corresponding to the linear harmonic oscillator problem. Thus $H|n\rangle=E_{n}|n\rangle=\left(n+\frac{1}{2}\right) \hbar \omega|n\rangle ; n=0,1,2 \ldots$ The matrix element $\langle n+1| x|n\rangle$ is equal to
(a) $\left(\frac{\hbar}{2 \mu \omega}\right)^{1 / 2} \sqrt{n}$
(b) $\left(\frac{\hbar}{2 \mu \omega}\right)^{1 / 2} \sqrt{n+1}$
(c) 0
(d) $\left(\frac{\hbar}{2 \mu \omega}\right)^{1 / 2} \sqrt{n-1}$
[Answer (b)]
7.2 $|n\rangle$ are the normalized eigenkets of the Hamiltonian corresponding to the linear harmonic oscillator problem. Thus $H|n\rangle=E_{n}|n\rangle=\left(n+\frac{1}{2}\right) \hbar \omega|n\rangle ; n=0,1,2 \ldots \quad$ The matrix element $\langle n-1| p|n\rangle$ is equal to
(a) 0
(b) $i\left(\frac{\mu \hbar \omega}{2}\right)^{1 / 2} \sqrt{n-1}$
(c) $i\left(\frac{\mu \hbar \omega}{2}\right)^{1 / 2} \sqrt{n}$
(d) $i\left(\frac{\mu \hbar \omega}{2}\right)^{1 / 2} \sqrt{n+1}$
[Answer (c)]
7.3 In the linear harmonic oscillator problem the coherent state is given by $|\alpha\rangle=N \sum_{n=0,1,2, \ldots}^{\infty} c_{n}|n\rangle$ where $|n\rangle$ are the normalized eigenkets of the Hamiltonian. The coefficients c_{n} will be
(a) $\frac{\alpha^{n}}{\sqrt{n!}}$
(b) $\frac{\alpha^{n}}{n!}$
(c) $\frac{\alpha^{2 n}}{n!}$
(d) $\frac{\alpha^{2 n}}{\sqrt{n!}}$
[Answer (a)]
7.4 In the linear harmonic oscillator problem the coherent state is given by
$|\alpha\rangle=N \sum_{n=0,1,2, \ldots}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle$ where $|n\rangle$ are the normalized eigenkets of the Hamiltonian. The normalization constant N is given by
(a) 1
(b) $e^{-\frac{1}{2}|\alpha|^{2}}$
(c) $e^{-|\alpha|^{2}}$
(d) $e^{-2|\alpha|^{2}}$
[Answer (b)]

