Module 7: Bra-Ket Algebra and Linear Harmonic Oscillator- II

7.1 $|n\rangle$ are the normalized eigenkets of the Hamiltonian corresponding to the linear harmonic oscillator problem. Thus $H|n\rangle = E_n |n\rangle = \left(n + \frac{1}{2}\right)\hbar\omega |n\rangle$; n = 0, 1, 2... The matrix element $\langle n+1|x|n\rangle$ is equal to (a) $\left(\frac{\hbar}{2\mu\omega}\right)^{1/2}\sqrt{n}$ (b) $\left(\frac{\hbar}{2\mu\omega}\right)^{1/2}\sqrt{n+1}$ (c) 0 (d) $\left(\frac{\hbar}{2\mu\omega}\right)^{1/2}\sqrt{n-1}$

[Answer (b)]

7.2 $|n\rangle$ are the normalized eigenkets of the Hamiltonian corresponding to the linear harmonic oscillator problem. Thus $H|n\rangle = E_n|n\rangle = \left(n + \frac{1}{2}\right)\hbar\omega|n\rangle$; n = 0, 1, 2... The matrix element $\langle n-1|p|n\rangle$ is equal to

(a) 0

(b)
$$i \left(\frac{\mu\hbar\omega}{2}\right)^{1/2} \sqrt{n-1}$$

(c) $i \left(\frac{\mu\hbar\omega}{2}\right)^{1/2} \sqrt{n}$
(d) $i \left(\frac{\mu\hbar\omega}{2}\right)^{1/2} \sqrt{n+1}$

[Answer (c)]

7.3 In the linear harmonic oscillator problem the coherent state is given by $|\alpha\rangle = N \sum_{n=0,1,2,...}^{\infty} c_n |n\rangle$ where $|n\rangle$ are the normalized eigenkets of the Hamiltonian. The coefficients c_n will be

(a) $\frac{\alpha^n}{\sqrt{n!}}$

(b)
$$\frac{\alpha^n}{n!}$$

(c) $\frac{\alpha^{2n}}{n!}$
(d) $\frac{\alpha^{2n}}{\sqrt{n!}}$

[Answer (a)]

7.4 In the linear harmonic oscillator problem the coherent state is given by

 $|\alpha\rangle = N \sum_{n=0,1,2,\dots}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle$ where $|n\rangle$ are the normalized eigenkets of the Hamiltonian. The normalization constant N is given by

(a) 1 (b) $e^{-\frac{1}{2}|\alpha|^2}$ (c) $e^{-|\alpha|^2}$ (d) $e^{-2|\alpha|^2}$

[Answer (b)]